
17th Fall Workshop on Computational Geometry, 2007

Connecting Polygonizations via Stretches and Twangs: Abstract
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Abstract

We show that the space of polygonizations of a fixed pla-

nar point set S of n points is connected by O(n2) “moves”

between simple polygons. Each move is composed of a se-

quence of atomic moves called “stretches” and “twangs”.

These atomic moves walk between weakly simple “polygo-

nal wraps” of S. These moves show promise to serve as a

basis for generating random polygons.1

1 Introduction

This paper studies polygonizations of a fixed planar
point set S of n points. Let the n points be labeled
pi, i = 0, 1, . . . , n−1. A polygonization of S is a per-
mutation σ of {0, 1, . . . , n−1} that determines a poly-
gon: P = Pσ = (pσ(0), . . . , pσ(n−1)) is a simple (non-
self-intersecting) polygon. We will abbreviate “simple
polygon” to polygon throughout. As long as S does not
lie in one line, which we will henceforth assume, there
is at least one polygon whose vertex set is S. A point
set S may have as few as 1 polygonization, if S is in
convex position, and as many as 2Θ(n) polygonizations;
see Fig. 1a.

Our goal in this work is to develop a computationally
natural and efficient method to explore all polygoniza-
tions of a fixed set S. One motivation is the generation
of “random polygons” by first generating a random S
and then selecting a random polygonization of S. Gen-
erating random polygons efficiently is a long unsolved
problem; only heuristics [AH96] or algorithms for spe-
cial cases [ZSSM96] are known. Our work can be viewed
as following a suggestion in the latter paper: “start
with a ... simple polygon and apply some simplicity-
preserving, reversible operations ... with the property
that any simple polygon is reachable by a sequence of
operations”

Our two operations are called stretch and twang (de-
fined in Sec. 2). Neither is simplicity preserving, but
they are nearly so in that they produce “polygonal
wraps.” A polygonal wrap Pσ is determined by a se-
quence σ of point indices that includes every index in
{0, 1, . . . , n−1} at least once, such that there is a pertur-
bation of the points in multiple contact that renders Pσ

a simple closed curve through the perturbed points in σ
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order. Thus polygonal wraps disallow proper crossings
but permit self-touching.

Fig. 1b shows a polygonal wrap with five double-
contacts (p1, p4, p5, p8 and p9).

Stretches and twangs take one polygonal wrap to
another. A stretch followed by a natural sequence of
twangs, which we call a cascade, constitutes a forward
move. Forward moves take a polygon to a polygon, i.e.,
they are simplicity preserving. Reverse moves will not
be described in this Abstract. A move is either a for-
ward or a reverse move. We call a stretch or twang an
atomic move to distinguish it from the more complex
forward and reverse moves.

Our main result is that the configuration space of
polygonizations for a fixed S is connected by for-
ward/reverse moves, each of which is composed of a
number of stretches and twangs, and that the diameter
of the space is O(n2) moves. We can bound the worst-
case number of atomic moves constituting a particular
forward/reverse move by the geometry of the point set.
Experimental results on random point sets show that,
in the practical situation that is one of our motivations,
the bound is small, perhaps even constant. We have
also established loose bounds on the worst-case number
of atomic operations as a function of n: an exponential
upper bound and a quadratic lower bound. Tightening
these bounds has so far proven elusive and is an open
problem.

One can view our work as in the tradition of connect-
ing discrete structures (e.g., triangulations, matchings)
via local moves (e.g., edge flips, edge swaps). Our result
is comparable to that in [vLS82], which shows connec-
tivity of polygonizations in O(n3) edge-edge swap moves
through intermediate self-crossing polygons. The main
novelty of our work is that the moves, and even the
stretches and twangs, never lead to proper crossings,
for polygonal wraps have no such crossings.

p
0

p
1

p
2

p
3

p
5

p
8

p
7

p
4

p
6

p
9 vk

v1

a

b

v2

v3

v4
0 0 01 1

(a) (b) (c)

Figure 1: Examples. (a) A set of n = 3k + 2 points
that admits 2k polygonizations. (b) Polygonal wrap Pσ

with σ = (0, 8, 6, 8, 1, 5, 9, 2, 9, 4, 5, 1, 4, 3, 7) (c) A poly-
gonization with one pocket with lid ab.

Let P be a polygonization of S. A hull edge ab that
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is not on ∂P is called a pocket lid, and the external
polygon bounded by P and ab is a pocket of P . For a
fixed hull edge ab, we define the canonical polygoniza-
tion of S to be a polygon with a single pocket with lid ab
(known to exist [CHUZ92]) in which the pocket vertices
are ordered by angle about vertex a, and from closest to
farthest from a if along the same line through a. We call
this ordering the canonical order of the pocket vertices;
see Fig. 1c.

2 Stretches and Twangs

In this Abstract, we do not have space to define the
atomic moves Stretch(e, v) and Twang(abc), and in-
stead rely on Figs. 2 and 3. Informally, if one views
the polygon boundary as an elastic band, a stretch
stretches e out to v, and a twang detaches the bound-
ary from a vertex b and snaps it to b’s convex side.
The Stretch(e, v) operation requires that v see a point
x in the relative interior of e. The stretch is accom-
plished in two stages: (i) temporarily introduce two
new “pseudovertices” on e in a small neighborhood of
x (Stretch0 in Fig. 2), and (ii) remove the pseudover-
tices immediately using twangs.
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Figure 2: Stretch(e, v) illustrated (a) v sees x ∈ e (b)
Stretch0(e, v) (c) Stretch(e, v).

a

b

c a c

a'

c'

b

a'

c'

(a)

a

b

c

b1

b2
b3

a

b

c

(b)

b1

b2
b3

TWANG(abc)TWANG(abc)

Figure 3: Twang(abc) illustrated (a) Twang(abc) re-
places abc by sp(abc) (b) Twang(abc) creates the hair-
pin vertex a and three doubled edges ab1, b1b2 and b2b3.

That a twang cascade (see Fig. 4) eventually termi-
nates is not immediate, but we establish both a geo-
metric bound based on perimeter reduction, and com-
binatorial bounds of Ω(n2) and O(nn) on the number
of twangs in any twang cascade.

3 Algorithm & Connectivity

We first detail a Single Pocket Reduction algo-
rithm, which repeatedly picks a hull vertex v of some
pocket A and attaches v to a pocket other than A. It
terminates in O(n) forward moves. Then the Pocket
Reduction algorithm reduces multiple pockets to just

v
=b1

(d)

e

c2

=a4

c4

a b a b
4

a=b b a
b

cc c

c=

u

w

v

a1u=
= ...

v v

(a) (b) (c)c1w=

a1u=

Figure 4: Forward move illustrated. (a) Initial
polygon P ; (b) After Stretch(ab, v); (c) After
Twang(a1b1c1) and two more twangs not shown; (d)
After Twang(a4b4c4).

one, employing Θ(n2) forward moves. Finally, the
Canonical Polygonization algorithm converts the
one pocket to the cononical form, again in O(n) forward
moves. Connectivity of the space of polygonizations fol-
lows by reducing two given polygonizations P1 and P2

to a common canonical form Pc, and then reversing the
moves from Pc to P2.

Theorem 1 The space of polygonizations of a fixed n-
point set is connected via a sequence of forward and re-
verse moves. Each node of the space has degree Ω(n),
and the diameter of the space is O(n2) moves.

This diameter bound is tight for our specific algorithm
but might not be for other algorithms.

4 Open Problems

Our work leaves many interesting problems open. One
unresolved question is narrowing the Ω(n2) to O(nn)
gap on the number of twangs in a cascade, thereby re-
solving the computational complexity of the polygon
transformation algorithm. We would also like to estab-
lish a lower bound on the diameter.

It remains to be seen if the polygonization moves ex-
plored in this paper will be effective tools for generating
random polygons. Finally, we are extending our work
to 3D polyhedralizations of a fixed 3D point set.
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